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NUMERICAL STUDY OF INTERACTION OF A VORTICAL DENSITY
INHOMOGENEITY WITH SHOCK AND EXPANSION WAVES

A. POVITSKY ∗ AND D. OFENGEIM †

Abstract. We studied the interaction of a vortical density inhomogeneity (VDI) with shock and expan-
sion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that
of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure
gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards
a non-symmetrical shape is studied numerically.

Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive
unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity
with a moderate overall number of mesh points. For the validation of the code, the computational results
are compared with available experimental results and good agreement is obtained.

The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced
circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation
of a non-symmetrical vortex pair and not in a set of vortices.

A method for the analytical computation of an overall induced circulation Γ1 as a result of the interaction
of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for Γ1 are derived
and their accuracy is discussed.

The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The
obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wave
for the same values of initial and induced circulations. These patterns have similar shapes for corresponding
time moments.

Key words. vortices, unstructured grids, automatic mesh refinement, Euler equations, vortical density
inhomogeneity, shock wave, expansion wave

Subject classification. Fluid Mechanics

1. Introduction. A common situation in compressible flows is that regions of concentrated vorticity
(vortex) are also the regions of inhomogeneous density, i.e, different density than ambiance. This vortical
density inhomogeneity (VDI) interacts with either a shock or an expansion wave, i.e., with regions of pressure
gradients. Current interest in this type of interaction is motivated to promote rapid mixing and combustion
of hydrogen and hydrocarbon fuels for supersonic combustor applications and problems of direct numerical
simulation of compressible turbulence. This research is a numerical investigation of this type of interaction.

Previous investigations of this type of interaction were concerned with the interaction of either a density
inhomogeneity (initial vorticity is zero) [1] or a ”pure” vortex [2] (without initial density inhomogeneity)
with a shock wave.

Non-parallel directions of the density gradient normal to a VDI surface and the pressure gradient across
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a shock wave cause an additional vorticity (denoted also as induced vorticity). This vorticity causes the VDI
to roll up into a non-symmetrical shape and to evolve towards a set of vortices of a finite core size. Detailed
experiments were carried out by Jacobs [3] to quantify the mixing induced by the interaction of a shock
wave with a cylindrical volume of a light gas (helium). Yang et al. [4] obtained an approximate analytical
expression for this type of interaction.

A ”pure” vortex interaction with a shock wave has been studied in various articles including the detailed
numerical research reported in [5]. The experimental research [6] has shown that the vortex is somewhat
compressed by the shock, while it generally retains the same configuration.

However, the interaction of the VDI with a shock wave as well as splitting of the VDI due to its passage
through regions of pressure gradients, like expansion waves, has not been studied previously.

Generally, the presence of an induced and initial circulation can lead to the roll-up of the VDI into
non-regular shapes, commonly including a number of vortices of different intensity. Our computations show
that vortices of the same sign merge into a single vortex and VDI shapes transform into a non-symmetrical
vortex pair of finite core size.

Our computations of the VDI interaction with an expansion wave show that in spite of obvious differences
between interactions of VDI with shock and expansion waves, similar VDI shapes are obtained for the same
values of induced and initial circulation. A correct estimation of induced circulation for the interaction with
an expansion wave should be done. In this article, we derive it for the Prandtl-Meyer expansion wave.

Special numerical techniques were used by various authors for capturing the roll-up of a gas bubble
moving with the flowfield after the shock-bubble interaction. Yang et al [4] use a regular numerical grid and
rectangular computational domain moving in time to track the developing vortex pair. Quirk and Karni
[7] use the Adaptive Mesh Refinement (AMR) algorithm. The AMR algorithm employs hierarchical system
of rectangular grids. A local solution at a previous time step is used to determine automatically where
refinement is needed to resolve small-scale phenomena.

An unstructured grid Euler solver [8]-[11] with a local refinement based on a density gradient is used in
this research. Its advantage is an automatic capture of thin regions of induced vorticity at the VDI boundary.

In section 2, governing equations and the computational method used are described. In section 3, we
investigate the phenomena of the VDI splitting due to the interaction with a propagating shock wave and
obtain dynamics of VDI patterns for a range of induced and initial circulation. In the last section, we derive
analytical estimations for induced circulation due to the VDI interaction with the Prandtl-Meyer expansion
wave and obtain VDI shapes by numerical computations.

2. Governing equations and numerical method. For a short limited time (a few milliseconds)
viscous effects are minor and a non-viscous assumption is used to describe the phenomenon [4], [7].

The two-dimensional unsteady Euler equations of gas dynamics describing an inviscid compressible flow
in conservative form can be written as:

ut + fx + gy = 0.(1)

The vectors in equation (1) are

u=




ρ

ρu

ρv

e


 , f =




ρu

ρu2 + p

ρuv

(e + p)u


 , g=




ρv

ρuv

ρu2 + p

(e + p)v


 ,(2)
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where ρ is density, p-static pressure, (u, v)− velocity in Cartesian coordinates (x, y), and e is the total energy,
related to the other variables by an equation of state which for a perfect gas is

e =
p

(γ − 1)
+

1
2
ρ(u2 + v2)(3)

where γ = 1.4 ratio of specific heats.

The inviscid calculations have been carried out using an Euler code [10]. The code combines advantages
of the total variation diminishing (TVD) finite-volume schemes, unstructured grids and an unsteady local
adaptation of the grid to the features of the flow. The second-order Godunov-type scheme modified for
transient flows and unstructured grids by Fursenko et al. [9], was employed to solve the Euler equations.
This scheme is based on the TVD approach combined with second-order upwind differences and a solution
of the Riemann problem to obtain inter-zone fluxes. More detailed description of the numerical method used
in the Euler code can be found in [8]-[9].

The unstructured grids are composed of triangular area elements, that provide a more isotropic spatial
discretization as compared to traditional rectangular grids [8]. In order to generate an unstructured grid in
the computational domain the 2-D unstructured grid generator created by Voinovich and Galyukov [11] was
used. Fragments of the unstructured grid for a typical VDI interaction with a propagating shock wave are
shown in Figure 1a-b. The distance between the neighboring grid points is 2k times smaller than the initial
distance. Computations are done with the maximum k equal to 5.

The graphical presentation of numerical results has been done by the grid data VIGIE code [12] that
allows to visualize an unstructured grid computed fluid flow.

There are no available experiments for interactions with the VDI; therefore, results of an experimental
research for the interaction of a moving shock wave with density inhomogeneity [3] are used for the code
verification. Experiments were carried out for the interaction of a shock wave (M=1.09) with a cylindrical
volume of gas (helium) that is lighter than ambiance (air). Computational results are presented in Fig 2.
There is a good agreement with experimental results [3] at corresponding time moments.

3. Interaction between vortical density inhomogeneity and a propagating shock wave. A
computational domain for the interaction between the VDI and a straight propagating shock wave is shown
in Figure 3.

The initial conditions behind a shock wave are calculated according to the Rankine-Hugoniot relations;
ahead of the shock wave ambient conditions are given. The shock wave proceeds into ambient conditions
and interacts with a vortex superimposed on the ambient state.

The initial density ratio (D = ρl/ρh) between a light VDI material (ρl) and a heavy ambient air (ρh)
and the velocity ratio (W = Uc/Ub ) between a maximum tangential velocity (Uc) and a velocity behind the
shock wave (Ub) are governing parameters that determine the dynamics of the VDI shape after an interaction
with a propagating shock wave.

The 2-D vortex model [5] used for the VDI consists of two regions of the vortical flow: an inner core
region (Rc) and a surrounding region (Ro) where the velocity gradually reduces to zero (see Fig. 3a). In the
numerical experiments carried out the linear tangential velocity profile in the VDI core region is considered
and is represented by

Uθ(r) = Uc
r

Rc
; r < Rc,(4)
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the outer distribution is given by

Uθ(r) = Ar +
B

r
, Rc ≤ r ≤ Ro(5)

where Uθ is the tangential velocity, Uc− maximum core velocity, r = distance from vortex center, Rc− vortex
core radius (Rc = 0.5Ro is used), Ro− outer radius.

The constants A and B are chosen in such a way that the velocity matches at r = Rc and decays to zero
at r = R0. The initial circulation Γ0 is equal to 2πRcUc. The vortex rotates counterclockwise.

An initial uniform density profile is taken inside the VDI (ρ = ρl for r ≤ Ro).

Results of computations for the case D = 0.2; W = 1.0 and Mach number of the shock wave M = 1.5
are presented in Fig 4. Density isolines are shown at the time moments: 50µs, 70µs, 90µs, 110µs, 157µs,

203µs, 421µs. In order to visualize strengths of vortices, streamlines are drawn in Fig. 4e-h.

The induction of vorticity due to the interaction with a shock wave leads to stretching of the initial
vortex in the y direction. The interaction of the initial and induced vorticity results in further distortion of
the initial round vortex and its transformation to a ”snake-like” structure with a long ”tail” and a round
”head” (Fig 4h).

Streamlines in the upper part of Figs. 4e-f are far from a typical pattern of flux streamlines near a single-
point vortex. Later, initial and induced co-rotating counter-clockwise vorticity regions merge into one region
of concentrated vorticity (see Figs. 4g-h). The second counter-clockwise vortex is weak and hardly seen on
density isolines and streamlines. The streamlines become similar to those around a non-symmetrical vortex
pair.

In order to examine the influence of governing parameters W and D on VDI patterns three cases are
considered. The ratio Γ1/Γ0 is calculated for these cases and presented in Table 1.

Table 1

The VDI interaction with a propagating shock wave, Γ0 initial circulation, Γ1 induced circulation, Γ0/Γ0A, and Γ1/Γ1A

are ratios of initial and induced circulation to those in the case A

case D = ρl/ρh W = Uc/Ub Γ0/Γ0A Γ1/Γ1A Γ0/Γ1

A 0.2 1.0 1 1 0.888
B 0.2 0.5 0.5 1 0.444
C 0.5 1.0 1 0.4 1.776

In order to estimate the induced circulation due to interaction between a VDI and a shock wave, an
approximate expression obtained for shock-bubble interaction [4] is used:

Γ1 ≈ 4R0

Vs

∆p

ρ2

ρh − ρl

ρl + ρh
,(6)

where ρ2 and Vs are values of density and stream velocity behind the shock wave, ∆p - pressure drop across
the shock wave.

The above expression was derived under the assumption of a uniform density profile inside the bubble,
i.e., the density gradient is only caused by the density difference between the bubble and ambiance.

However, the density profile inside the VDI is not uniform due to rotation, and we have to prove that
the density gradient at the outward boundary of the VDI (at the inner side) is equal to zero.
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After a short time (prior to the interaction) the profiles of pressure and density inside the VDI become
close to those given by equilibrium equations for an isentropic steady vortex:

dp

dr
=

ρU2
θ

r
,(7)

p

ργ
=

pamb

ργ
amb

,(8)

with the boundary condition p1(r = Ro) = pamb, where the index ’amb’ corresponds to the ambiance
conditions either in front or behind the shock wave.

The radial density gradient is obtained from (8):

dρ

dr
∼ p1/γ−1 dp

dr
,(9)

At the outward boundary of the VDI Uθ = 0; therefore, the pressure gradient is equal to zero (see (7)).
Thus, the density gradient is also equal to zero at the inner side of the VDI boundary.

Dimensionless coordinates (x/Ro; y/Ro) of centers of vortices, relative density (ρc/ρamb) and pressure
(pc/pamb) at these centers in T = 421µs are presented in Table 2. Local pressure minimums are taken as
centers of vortices.

Table 2

VDI shapes, T = 421µs, MV-main counter-clockwise vortex, SV1- clockwise vortex, SV2-second counter-clockwise vortex.

Case A

x/Ro y/Ro ρc/ρamb pc/pamb

MV 7.053 0.26 0.283 0.866
SV1 7.413 0.76 0.846 0.893
SV2 1.818 0.518 0.926 0.930

Case B

x/Ro y/Ro ρc/ρamb pc/pamb

MV 6.82 0.37 0.244 0.884
SV1 7.23 3.03 0.672 0.920
SV2 5.45 0.13 0.917 0.993

Case C

x/Ro y/Ro ρc/ρamb pc/pamb

MV 6.71 0.386 0.415 0.788
SV1 7.41 0.933 0.968 0.961
SV2 5.48 0.213 0.971 0.956

The overall strength of vortices characterized by Γ0 + Γ1 is maximum in case A and minimum in case C
(see Table 1). Thus, the rotational velocity induced by vortices also reduces from case A to C. This rotational
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velocity is added to the flux velocity Ub and influences the speed of the VDI. The x-coordinate of the main
vortex is maximum in case A and minimum in case C.

Due to the process of the merge of two counter-clockwise vortices the y-coordinate of the main vortex is
shifted up. This shift is most marked in case A.

Density values show that the core of the main vortex remains almost unmixed. The mixing is more
complete for the clockwise vortex (SV1). The second counter-clockwise vortex (SV2) is mixed with ambiance
and its density is close to the ambiance density.

The values of a local pressure minimum at the centers of vortices depend upon the rotational velocity
and density inside the VDI (see (7)). The deeper pressure minimum in case C is explained by a 2.5-time
higher initial density than that in cases A and B. In spite of a higher density level in case C, the pressure
minimum in the center of SV1 vortex for case C is less than in cases A and B. This is due to a smaller
induced vorticity (see (6)) and a corresponding lower level of rotational velocity.

Results for W = 0.1, 0.25, 0.5, 1.0 and the same initial density of the VDI D = 0.2, i.e., the computations
are performed for a constant Γ1 and various Γ0 values, are presented. Density isolines for these cases are given
in Fig 5a-d. The reduction of the initial rotational velocity leads to the formation of a more symmetrical
shape of a rolled-up VDI. In the case of a small initial vortical velocity a nearly symmetrical vortex pair is
obtained (Fig. 5a). For higher values of W the VDI structure becomes non-symmetrical. Pressure isolines
are shown in Fig 5e-h and a pair of two round vortices appears for all values of W .

In all cases considered in this section the splitting of the VDI developes into a non-symmetrical vortex
pair.

4. Interaction between VDI and expansion waves.

4.1. Estimation of induced circulation. The interaction between a Prandtl-Meyer expansion wave
and light vortical inhomogeneity is considered (Fig. 3b).

In a Prandtl-Meyer expansion wave streamlines diverge around a sharp convex corner. The mechanism of
inducing vorticity due to a non-parallel gradient of density at the outer boundary of the vortex and gradient
of pressure is relevant for the case of VDI interaction with an expansion wave. However, in this case the VDI
passes through the region of pressure gradient and not through a steep pressure drop as in the previous case
of the interaction with a propagating shock wave. Therefore, the induced vorticity grows gradually and this
is an essential difference between the two types of interaction.

A search is made for an appropriate estimation of the circulation induced in a VDI passing through an
expansion wave. An expansion wave or a part of it can be characterized by upstream and downstream Mach
numbers (Mu and Md, respectively). The approximation (6) was derived under the assumptions of stepwise
pressure drop across the shock wave and a constant velocity of a shock propagation. For the interaction
between the VDI and an expansion wave an approximate expression for an induced circulation is written as
a sum of the circulation induced due to interactions with n weak waves:

Γ1 =
n∑

i=2

(
4R

V ρ

)
i

(pi − pi−1)
(

ρh − ρl

ρl + ρh

)
,(10)

The variation of Mach number for all n waves is the same: 1

∆M = Mi+1 −Mi =
Md −Mu

n− 1
(11)

1Variation of local angle is not the same for these n waves
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pi−1 and pi denote upstream and downstream pressure of the i − th wave, Ri radius of the VDI in the
interaction with the i− th wave, Vi is the gas velocity upstream of the i− th wave and ρi is the gas density
downstream of the i− th wave.

The last term (ρh − ρl)/(ρl + ρh) is constant due to the fact that the density ratio ρh/ρl remains the
same for an isentropic expansion of gases with the same ratio of specific heats. The first term, Qi = R/(V ρ)i

is variable as the radius of the VDI, velocity and density of the mainstream vary through an expansion wave.
The normalized value of induced circulation can be written as:

Γ1 ≈
n∑

i=2

Qi

Qd

(pi − pi−1)
Pd

,(12)

where Qd = (R/(V ρ))d and Pd are values of the parameter Q and pressure downstream from the
expansion wave.

The first term Qi/Qd in the above equation can be expressed as a function of Mach numbers Mi and
Md as follows. The radius of the VDI increases due to the expansion of streamlines. The distance between
streamlines is inversely proportional to the mass flux, V ρ. Therefore, the above term is given by the following
expression:

Qi

Qd
=

(
Vdρd

Viρi

)(
Ri

Rd

)
=

(
Vdρd

Viρi

)2

(13)

Stream velocities are connected directly to Mach numbers:

Vd

Vi
=

Md

Mi

cd

ci
,(14)

where c - speed of sound.
Substituting isentropic relations [13]

pd

pi
=

(
1 + [(γ − 1)/2]M2

i

1 + [(γ − 1)/2]M2
d

) γ
γ−1

;(15)

ρd

ρi
=

(
1 + [(γ − 1)/2]M2

i

1 + [(γ − 1)/2]M2
d

) 1
γ−1

;(16)

cd

ci
=

√
Td

Ti
=

(
1 + [(γ − 1)/2]M2

i

1 + [(γ − 1)/2]M2
d

) 1
2

(17)

in (13), we have

Qi

Qd
=

(
Md

Mi

)2 (
1 + [(γ − 1)/2]M2

i

1 + [(γ − 1)/2]M2
d

) γ+1
γ−1

(18)

The normalized induced circulation is computed by (12) vs. parameter Z = Mi/Md for Md = 1.25, 1.5,

1.75, 2.0 and is shown in Fig 6a. Computations were performed in an ”upstream” manner up to Mu = 1, i.e,
for Z ranges from 1/Md to 1. The number of n waves is taken equal to 500.
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The computed induced circulation can be used for practical purposes. However, these numerical compu-
tations are somewhat cumbersome, especially if an inversed problem is to be solved, i.e., to find Mu or Md

for a required level of induced circulation. On the other hand, the expression (6) is also an approximation
of circulation; thus, high accuracy of integration (10) is excessive.

If Qi is replaced by its approximation Qapp independent of the i− th wave, then Γ1 is equal to Qapp

multiplied by the difference of upstream and downstream pressures of the expansion wave. For this purpose
the function Qi(Z) is studied in detail. Graphs of Qi/Qd vs the parameter Z are shown in Fig. 6b. One can
see that it is a slightly convex function of Z and the first term in the sum (12) can be approximated by the
average value of Qu and Qd:

Γ ≈ 0.5(Qu + Qd)(pu − pd)(19)

The use of this approximation leads to an overestimation of induced circulation. A relative error between
an approximate normalized induced circulation (19) and its value computed by (12) is shown in Fig. 7. The
error increases with the Md/Mu ratio and with Md. For Z > 0.75, a relative error is no more than 10%.

A straightforward approximation of Γ in the same form as (6)

Γ ≈ Ru

Vuρd
(pu − pd)(20)

leads to an underestimation of induced circulation. A relative error of the above approximation is more than
that for the previous approximation (19)) (compare families of curves a and b in Fig. 7).

4.2. Numerical study . The VDI splitting after its interaction with an expansion wave is studied
numerically. The expansion wave is considered provides the same amount of induced vorticity as for the
previously studied shock wave-VDI interaction. The upstream Mach number is taken equal to the Mach
number of the propagating shock in the previous case (Mu = 1.5). The value of induced circulation is
computed by (6). We choose an angle θ of the convex corner such as to produce the desired Prandtl-Meyer
expansion wave. For a given value of induced circulation the value of Qd is obtained from the expression
(19). The downstream Mach number Md is calculated from equation (18). The angle of the convex corner
is computed from

θ = ν(Md)− ν(Mu),(21)

where ν(M) is the Prandtl-Meyer function [13]. For example, for Mu = 1.5 and the downstream Mach
number Md = 2.01 we obtain θ = 130.

The distribution of rotational velocity is given by equations (4), (5). The maximum rotational velocity
of the vortex is taken equal to 0.3M . Thus, rotational velocity and initial circulation are the same as in the
previous case of the VDI interaction with a propagating shock wave.

A numerical simulation of the interaction between the VDI and the Prandtl-Meyer expansion wave is
performed as follows. First, the Euler equations are solved numerically to obtain a converged steady state
for uniformed flow followed by a Prandtl-Meyer expansion wave. After this the VDI was introduced into the
flowfield.

The computational domain and the VDI before the interaction are shown in Fig. 3b. Typical stages
of the VDI interaction with the expansion wave and downstream are presented in Fig. 8. Similar patterns
of the VDI shapes are observed after the interaction with shock and expansion waves. We recall that both

8



initial and induced circulations are equal in these two cases. However, the time scale is different in these
cases. The effective time of VDI splitting after the interaction with the Prandtl-Meyer expansion wave can
be computed by Teff = T − Texit, where Texit is the time when the VDI just passes an expansion wave and
get all induced vorticity from the interaction. Time should also be scaled by the mainstream velocity( 2.01
M / 0.6 M = 3.35 ). The VDI shape after the interaction with a shock wave at time T = 110µs (Fig. 4e)
is compared with the VDI shape after interaction with the Prandtl-Meyer wave at the corresponding time
moment Teff = 110 ∗ 3.35 + 371 = 740µs (Fig. 8h). One can conclude that the vortical shapes are similar
at corresponding times.

5. Conclusions. A numerical modeling of interaction between vortical density inhomogeneity (VDI)
and shock and expansion waves was performed using a 2-D Euler code. The use of an adaptive unstructured
numerical grid made it possible to obtain a high accuracy of computations and capture regions of induced
vorticity for a moderate overall number of mesh points.

The structure of two counter-rotating non-symmetrical vortices was observed after the VDI interaction
with a propagating shock wave.

Splitting of the VDI passing through the Prandtl-Meyer expansion wave was studied numerically. The
main difference between the interaction of the VDI with a shock wave and an expansion fan is a gradual
increase of the induced vorticity.

A method for the computation of an overall induced circulation as a result of the interaction with a
number of weak waves was proposed. A simplified approximation for computing this value was derived and
its accuracy was estimated analytically. This expression was used for the computation of the expansion angle
of the Prandtl-Mayer wave for a given value of the induced circulation.

The obtained shapes of the VDI after the interaction with an expansion wave are close to those obtained
for the shock-VDI interactions for the same values of initial and induced circulations. This gives us the
opportunity to obtain VDI shapes in a complicated geometry by the simulation of the interaction with a
straight propagating shock wave in a rectangular computational domain.
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a

b

Fig. 1. Fragment of unstructured grid with automatic mesh refinement: a, before the shock-VDI interaction; b, after the

interaction
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a

b

c

d

Fig. 2. Interaction of cylindrical bubble with a propagating shock wave (M=1.09; D=0.14; W=0). Density isolines are

taken with 40 equally spaced intervals between the minimum density inside the bubble and ambient density. The left side-our

computational results. The right side-experimental results [3]. Times: a, 123µs; b, 373µs; c, 573µs; d, 773µs
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Fig. 3. Computational domain: a, interaction of the VDI with a propagating shock wave; b, interaction of the VDI with

the Prandtl-Meyer expansion wave
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Fig. 4. Interaction of the VDI with a propagating shock wave (D=0.2; W=0.5) Density isolines are taken with 40 equally

spaced intervals between density at the center of the counterclockwise vortex and ambient density. Times: a, 0; b, 50µs; c,

70µs; d, 90µs; e, 110µs; f, 157µs; g, 203µs; h, 421µs
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Fig. 5. Patterns of VDI shapes (D = 0.2) at T = 421µs: a-d, density isolines; e-h, pressure isolines, a,e, W = 0.1; b,f,

W = 0.25; c,g, W = 0.5; d,h, W = 1
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Fig. 6. Estimation of induced circulation due to the interaction between the VDI and the Prandtl-Meyer expansion wave:

a, normalized induced circulation vs Z = Mu/Md; b, normalized value of Qu/Qd vs Z. Downstream Mach numbers: 1- 1.25;

2- 1.5; 3-1.75; 4-2.0
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Fig. 7. Relative error of approximation for induced circulation: a, by (19); b, by (20). Downstream Mach numbers: 1-

1.25; 2- 1.5; 3-1.75; 4-2.0
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Fig. 8. Interaction of the VDI with the Prandtl-Meyer expansion wave (D=0.2). Density isolines are taken with 40

equally spaced intervals between minimum density inside the VDI and density upstream the expansion wave. Times: a, 0; b,

184µs; c, 371µs; d, 453µs; e, 535µs; f, 617µs; g, 699µs; h, 781µs
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